

Investigating Acrylic Aquarium Failures

Paul J. Gramann, Ph.D., P.E., The Madison Group 2615 Research Park Dr., Madison, WI 53711 p:608-231-1907; paul@madisongroup.com

Introduction

- A number of large aquariums have failed in public areas and in homes resulting in extremely large losses.
- With the correct engineering analysis, "how" and "why" these failures occurred can be established.
- Though this presentation is on aquarium failures, acrylic is used for numerous applications where the concepts presented may be applied.

Aquariums

- Range from 10 gallon hobby to 13 million gallon public aquariums.
- Public aquariums that are 500 100,000 gallons are popular in malls, restaurants and lobbies.
- Increasing number of one million+ aquariums are being constructed at zoos/aqua centers.
- Race is on to make bigger aquariums more extreme

Aquariums – Private (1300 gal)

Aquariums – Semi-Private

Front Lobby
Source: Living Color

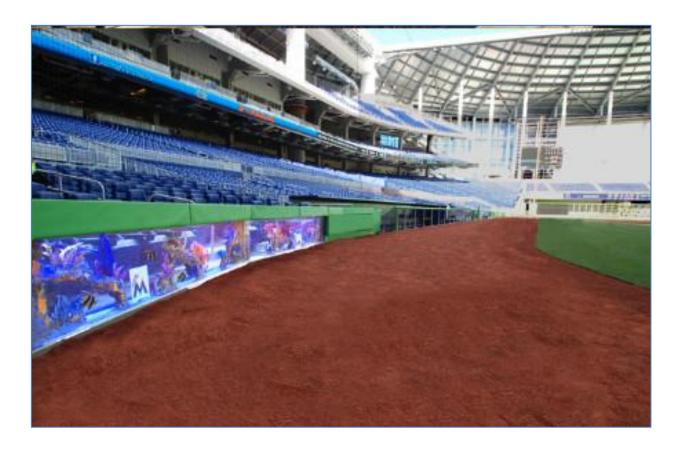
Mall

Source: Living Color

T-Rex Restaurant Disney



Burj, Dubai Restaurant



Georgia Aquarium



Marlins Professional Baseball Stadium

Aquariums/Pool - Public

Hotel

Source: Reynolds Polymer Technologies

Aquariums

- Must perform in many different environments.
 - Sunlight
 - Thermal changes
 - Fresh and salt water
- Aquarium will be exposed to various chemicals and

stresses.

- Food materials
- Alcohol
- Chlorine
- Impact (baseball, people hitting)

Material of Large Aquariums

- Made of plastic not glass.
- Poly(methyl methacrylate) (PMMA) a.k.a. Acrylic, Plexiglas
- Benefits of Plastic
 - Design/shape flexibility
 - Shatter/ impact resistant (not as brittle as glass)
 - Extremely clear
 - Joining large sections together to create huge tanks
 - Half the weight of glass
 - Chemical resistance is good
- Possible Issues
 - Scratch resistance
 - Assembly needs to be very accurate with no added stress
 - Plastic moves over time creep/rupture
 - Chemical resistance is lower than glass
 - Extremely notch sensitive.

Other Uses of Acrylic

- Large windows
- Lighting
- Art
- Translucent roofing
- Underwater (high pressure) windows
- Hyperbaric chambers
- Tubing, cylinders, sheets......

Making Large/Thick Panels

- Casted poured into mold. Very common.
- Continuous casted poured on to convey belt and allowed to polymerize and cool to shape
 - Stress ~free
 - High clarity
 - High molecular weight -> high mechanical properties
- Other products can be injection molded, extruded, compression molded.

Ref: Avonite

Making Large/Thick Panels

- Shapes are heated and formed into shape
- Panels are typically placed in oven to release stresses
- Panels are then prepared prior to assembly

Ref: ATL (Aquarium Technology)

Ref: Reynolds Polymer Technology

How Large Aquariums are Made

Each Step is Critical to Ensure Failure Does Not Occur:

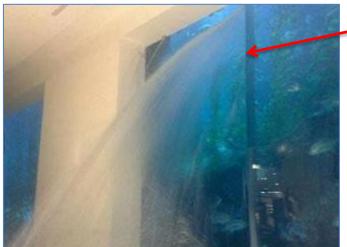
- Large panels are made by casting large panels into exact shape.
- Surfaces to be bonded are prepared smooth, free of particles. Sometimes a spacer is placed between curved panels.
- A syrup and/or solvent adhesive is carefully applied to both sides of spacer and sides of both panels.
- Panels fitted exactly together not forced into shape.
- Held in place to allow molecular bonding from panel to panel.
- Bonded joint will typically retain 70 90% of panel strength.

Ref: ATL (Aquarium Technology)

T-Rex Disney

• Gulfstream Casino – Hallandale, FL

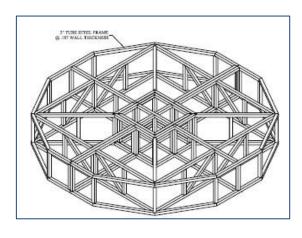
• Lotte Tower, Seoul, South Korea (5th tallest building)

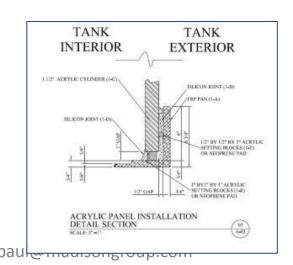


• Burj Tower, Dubai (Mall attached to tallest building)

Water leak

- This equipment can be located directly below aquarium.
- Aquarium leak can result in damage to this equipment.


- Manufacturing
 - Very good acrylic must be used
 - Shape/size has to be exacting
 - No flaws can be present in panels
 - No/little molded-in stress result in creep of plastic
- Assembly
 - Assembly of tank is critical to ensure tight fit with no added stress
 - Panels cannot be forced together during assembly.
 - Adhesive process is critical
 - Proper adhesive.
 - Proper application



- Installation
 - Loads must be distributed evenly throughout the tank.
 - Tank must be installed level with no twisting.
 - Tank stand must be solid cannot move over time or if/when tank is bumped.
 - Joints are designed to be water tight and absorb shocks to system.
 - Correct sealant must be used (e.g. Dow Corning 795).
 - Correct amount of sealant too little or too much can lead to failure.
 - Damage in form of deep nicks or gouges can lead to failure.

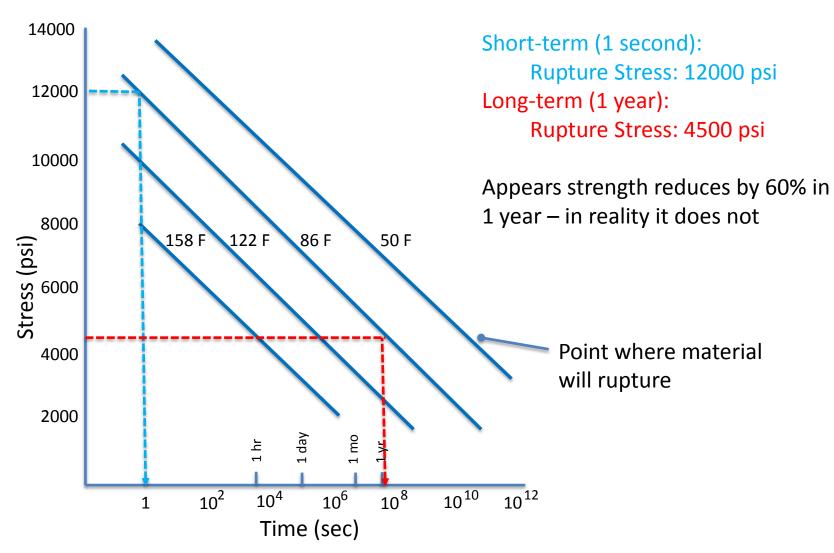
Paul J. Gramann, Ph.D., P.E.

- Maintenance
 - Tank should be kept clear of external loads but design should expect some un/expected loads/impact.
 - Acrylic does have issues with certain chemicals thicker panels and proper installation can increase resistance to chemicals. Possible issues with:

- Acids
- Aggressive solvents
- Aggressive/industrial cleaners (strong chlorinated)

Failure can, and usually does, occur months or years after tank has been exposed to root cause of failure.

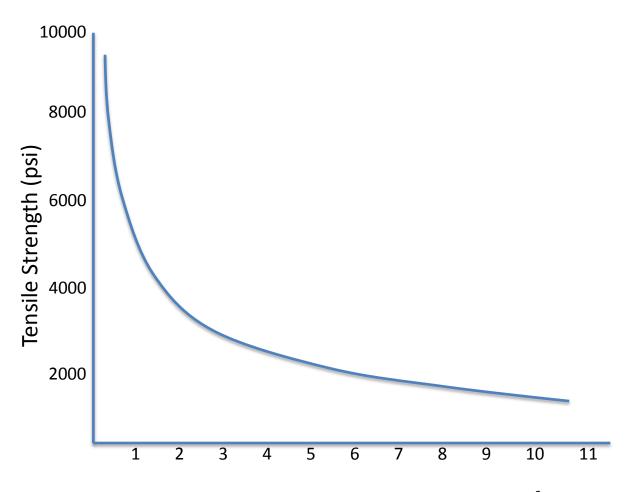
Strength of Acrylic Decreases Over Time



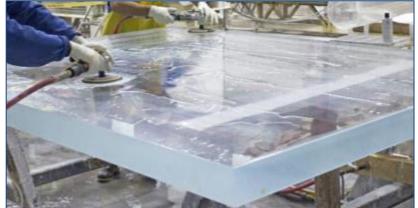
- Most aquariums are over designed with significant panel thickness.
- The typically design factor of safety for this application is 11 14x.
- At room temperature, the design stress for a 10 year life is 1500 psi [10.3 MPa] and for 20 year life it is 650 psi [4.5 MPa].
- The maximum flexural strain is typically 7%, but should be kept well below this.
- The creep rupture strength of acrylic will decrease significantly over time see next graph.

Creep Rupture Curve for Acrylic

Time to failure for specified stress, at various temperatures

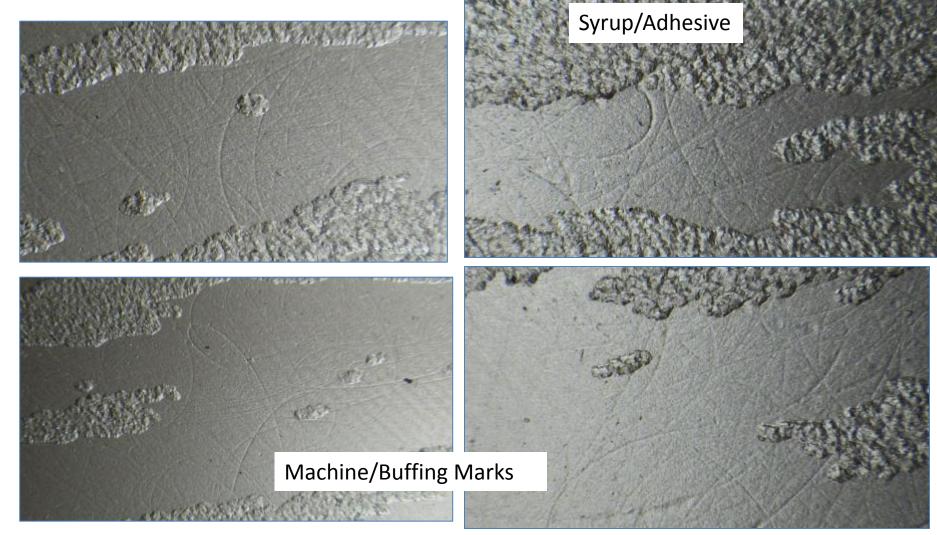

Acrylic is Notch Sensitive

- Care must be taken during production, installation and while in service that the acrylic panel does not experience sharp notches.
- Sharp notches can result in crack propagation over time and lead to catastrophic failure.
- The tensile strength reduces tremendously as depth of notch increase.
- A sharp notch/scratch 0.01 in [0.25 mm) depth can decrease the tensile strength of the panel by 50% see next graph.
- Thickness of panel and factor of safety typically account for expected pedestrian scratches.


Acrylic is Notch Sensitive

Depth of Sharp Notch (1 in x 10⁻²)

Poor Bonding



The Madison Group

THE MADISON GROUP

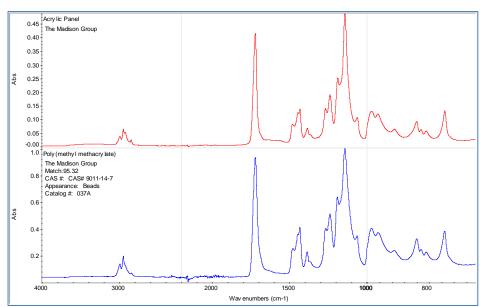
Poor Bonding

Methods/Tools to Help Determine the How and Why

- There are a number of testing methods to help the engineer all may not need to be conducted.
- Understanding what tests to perform and the information these tests provide is important during the failure analysis.
- How to conduct a failure analysis/inspection of a failed aquarium should not be underestimated.
- Knowledge on the behavior of plastics is critical to understand why the failure occurred.

Microscopy

- Microscopy allows the engineer to examine the fine features of the crack.
- Help the engineer fine the crack initiation location. This could be critical to determine "why" the failure occurred.
- Help the engineer determine if the crack progressed slowly initially (propagate from an internal flaw) or was it a high energy event (e.g. impact).
- Provide information on the condition of the acrylic (e.g. manufacturing issues).


Paul J. Gramann, Ph.D., P.E.

FTIR

- Fourier transformation infrared spectroscopy (FTIR) allows for the identification of organic compounds and some inorganic.
- Used to identify type of plastic, possible additives/fillers and foreign substances that may deleterious to the acrylic.
- Used to identify sealants and other materials on the acrylic panel.

Paul J. Gramann, Ph.D., P.E.

Material Property Analysis

- THE MADISON GROUP
- Various methods can be used to provide information on the mechanical properties of the panel.
- Tensile testing following ASTM D 638 will provide the following information modulus, strength & strain at yield, elongation at break, among other data.
- The drop in modulus as the temperature increases can be found using dynamic mechanical analysis (DMA).
- Lifetime prediction can be done using structural analysis, tensile testing and DMA.

Summary

- The popularity of large acrylic aquariums has grown in recent years in both residential and commercial settings.
- Catastrophic failures can result in significant property damage and, in rare instances, even personal injury.
- Potential causes of acrylic tanks are generally related to manufacturing, installation, maintenance, or a combination thereof.
- The correct engineering and testing can help determine "how" and "why" failure has occurred.

Paul J. Gramann, Ph.D., P.E. paul@madisongroup.com p: 608-231-1907